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Some Writing Theory...



The Importance of Writing

If you don’t write about/publish your work,
it is as if you never did it!

(If a tree falls in a forest and no one is there to
hear it, does it make a sound?)



The Importance of Good Writing

* You want your writing get published
* You want your writing to be read

* You want your writing to be understood
— For the good of your field
— For the good of your reputation

— For the good of your career (impressive papers
help you get jobs!)



Entering the Conversation

Think of all the work that has been done in your
field as a “conversation”

Each researcher/writer has contributed
something (an “argument”) to this dialogue

What you write (your argument) is in some way a
response to what someone else has said

— you disagree, you’'re agreeing but adding new
evidence, etc.

Academic writing = persuasive writing!

Adapted from They Say, | Say by Graff & Birkenstein



7)

“They say ;| say

e Present your ideas as a response to some
other person or group

e |f your own argument doesn't identify the
"they say" that you're responding to, then it
probably won't make sense

e (It is what others are saying and thinking that
motivates our writing and gives it a reason for
being)

Adapted from They Say, | Say by Graff & Birkenstein



Activity

 Think about a paper you’re writing now
(or a project you’re working on)

e Write down your argument
— “They say ....”
— “l say....”



Structure



Science Paper Structure
(follows classical scientific method)

Question

Hypothesis

Methods: Experiment to test hypothesis
Results of experiment

Conclusion: accept or reject hypothesis



Engineering Paper Structure
(subtly different)

- Problem
— Proposed solution
—> Evaluation of proposed solution
—> Analysis

- Conclusion

Adapted from “How to Read an Engineering Paper” by W. G. Griswold



Introduction/Background

e Contextualize
— What is the big picture?
— What problem are you trying to solve?
— Why is it important?

— What work has been done by others in the past that leads
up to your work? (literature review)

— How does your work fit within the context of the broader
conversation?

— How is your work the natural next step?
— “They say ; | say g
e Consider your audience

e Explicitly state your argument



Methods

e Describe your methods/experiments/
procedures/test benches/etc. to the level of
detail such that a reader can replicate your

results

e Avoid vague statements like “We used graph
theory followed by convex optimization.”
(How? To do what? Why?)



Discussion/Conclusion

Contextualize again

— How do these results relate back to the big
picture?

— What are the contributions of this work? Why is it
important?

— What are the future directions of this research?
— What questions are you left with?

— What is the takeaway message from this paper?



Abstract

* Should include

Statement that places your work in context
Brief description of methods

Main results

Main conclusions

e Aim for informative, not descriptive

“Conclusions as to the effectiveness of this method of carbon
monoxide monitoring are given, together with suggested
recommendations for future air quality sampling programmes.”

VS.

“We concluded that the methods were effective in measuring the
spatial distribution of carbon monoxide, estimating commuter
exposure, and assessing the effectiveness of fixed-site monitors.
An on-road monitoring programme is recommended as a
supplement to the present system of monitoring air quality.”

Adapted from “Writing for Science and Engineering” by H. Silyn-Roberts



Example
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A Low-Power Integrated Circuit for a Wireless
100-Electrode Neural Recording System
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Robert O. Lovejoy, Daniel J. Black, Student Member, IEEE, Bradley
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Abstraci—Recent work in field of neuroprosthetics has demon-
strated that by observing the simultaneous activity of many neu-
rons in specific regions of the brain, it is possible to produce con-
trol signals that allow animals or humans to drive cursors or pros-
thetic limbs directly through thoughts. As neuroprosthetic devices
transition from experimental to clinical wvse, there is a need for
fully-implantable amplification and telemetry electronics in close
proximity to the recording sites. To address these needs, we devel-
oped a prototype integrated circuit for wireless neural recording
from a 100-channel microelectrode array. The design of both the
system-level architecture and the individual circuits were driven by
severe power constraints for small implantable devices: chronically
heating tissue by only a few degrees Celsius leads to cell death. Due
to the high data rate produced by 100 neural signals, the system
must perform data reduction as well. We use a combination of a
low-power ADC and an array of “spike detectors” to reduce the
transmitted data rate while preserving critical information. The
complete system receives power and commands (at 6.5 Kb/s) wire-
lessly over a 2.64-MHz inductive link and transmits neural data
back at a data rate of 330 kb/s using a fully-integrated 433-MHz
FSK transmitter. The 4.7 x 5.9 mm* chip was fabricated in a
0.5-pem 3NM2P CMOS process and consumes 13.5 mW of power.
While cross-chip interference limits performance in single-chip op-
eration, a two-chip system was used to record neural signals from
a Utah Electrode Array in cat cortex and transmit the digitized sig-
nals wirelessly to a receiver.
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When observed using an extracellular microelectrode a few tens
of microns away, a potential of 50-500 ;V can be detected. (In-
tracellular penetrating electrodes can measure the entire 100 mV
signal, but result in cell death within a few minutes and are
thus not feasible for chronic implants.) A typical neuron gener-
ates 10—100 spikes per second when active. Resting or “sponta-
neous” activity of neurons ranges up to 1-10 spikes per second.

By observing the action potentials of many neurons in partic-
ular regions of the brain responsible for motor planning or con-
trol, it is possible to gather enough information to predict hand
trajectories in real time during reaching tasks in awake behaving
primates [3]-[5]. In a training stage, neural activity is monitored
while an animal performs various reaching tasks or other limb
movements. Hand or limb movements are carefully monitored
and correlated with the simultaneous neural data. Once the cor-
relation between hand movement and neural activity has been
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Abstract—Recent work in field of neuroprosthetics has demon-
strated that by observing the simultaneous activity of many neu-
rons in specific regions of the brain, it is possible to produce con-
trol signals that allow animals or humans to drive cursors or pros-
thetic limbs directly through thoughts. As neuroprosthetic devices
transition from experimental to clinical use, there is a need for
fully-implantable amplification and telemetry electronics in close
proximity to the recording sites. To address these needs, we devel-
oped a prototype integrated circuit for wireless neural recording
from a 100-channel microelectrode array. The design of both the
system-level architecture and the individual circuits were driven by
severe power constraints for small implantable devices: chronically
heating tissue by only a few degrees Celsius leads to cell death. Due
to the high data rate produced by 100 neural signals, the system
must perform data reduction as well. We use a combination of a
low-power ADC and an array of “spike detectors™ to reduce the
transmitted data rate while preserving critical information. The
complete system receives power and commands (at 6.5 kb/s) wire-
lessly over a 2.64-MHz inductive link and transmits neural data
back at a data rate of 330 kb/s using a fully-integrated 433-MHz
FSK transmitter. The 4.7 x 5.9 mm® chip was fabricated in a
0.5-pem 3M2ZP CMOS process and consumes 13.5 mWV of power.
While cross-chip interference limits performance in single-chip op-
eration, a two-chip system was used to record neural signals from
a Utah Electrode Array in cat cortex and transmit the digitized sig-
nals wirelessly to a receiver.
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‘ Setting the stage

Identifying a need

Proposed solution

‘ Design constraints

‘ Brief results




[. INTRODUCTION

N THE PAST decade, neuroscientists and clinicians have

begun to use implantable MEMS multielectrode arrays (e.g.,
[1]. [2]) to observe the simultaneous activity of many neurons
in the brain. These silicon-based electrode structures are in-
serted into the cerebral cortex and observe the electrical activity
of nearby nerve cells. Neurons communicate with one another
using stereotyped voltage pulses known as action potentials or
spikes. Each spike has an amplitude of around 100 mV (rela-
tive to the extracellular fluid) and a duration of around 250 ps.
When observed using an extracellular microelectrode a few tens
of microns away, a potential of 50-500 .V can be detected. (In-
tracellular penetrating electrodes can measure the entire 100 mV
signal, but result in cell death within a few minutes and are
thus not feasible for chronic implants.) A typical neuron gener-
ates 10—-100 spikes per second when active. Resting or “sponta-
neous’ activity of neurons ranges up to 1-10 spikes per second.

By observing the action potentials of many neurons in partic-
ular regions of the brain responsible for motor planning or con-
trol, it is possible to gather enough information to predict hand
trajectories in real time during reaching tasks in awake behaving
primates [3|-[5]. In a training stage, neural activity 1s monitored
while an animal performs various reaching tasks or other limb
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Background
(2 paragraphs)




Currently, data is recorded from implanted multielectrode
arrays using bundles of fine wires that tether the array to a
skull-mounted connector; all electronics for amplification and

recording is external to the body. This presents three major

barriers to the development of practical neuroprosthetic de-

vices: 1) the transcutaneous connector provides a path for

infection; 2) external noise and interfering signals easily couple
to the wires conveying weak neural signals (< 500 pV) from
high-impedance electrodes (> 100 k€2 at 1 kHz); and 3) the
connector and external electronics are typically large and bulky
compared to the ~5 mm electrode arrays. To eliminate these
problems, data from the implanted electrodes should be trans-
mitted out of the body wirelessly. Wireless neural recording
systems from the 1990s were built from discrete modules [7].
while more recent wireless systems have utilized an integrated

circuit for amplification and several off-chip components for

power rectification [8]. Recently, a battery-powered system
utilizing an IC with an off-chip inductor was used to record
and transmit neural signals from an animal using analog FM
modulation [9]. (Also see [9] for a thorough review of previous
wireless biopotential recording systems.)

Problems with
current state of the
art

Literature review:
How others have
attempted to
address these
problems




Wireless neural recording requires electronics at the
recording site to amplify, condition, and digitize the neural
signals from each electrode. Ideally, these circuits should
be powered wirelessly since rechargeable batteries are rela-
tively large and have limited lifetimes. Low power operation
(~10 mW) is essential for any small implanted electronics as
elevated temperatures can easily kill the neurons one 1s trying
to observe.

We are developing a wireless, fully-implantable neural
recording system to facilitate neuroscience research and neuro-
prosthetic applications (see Fig. 1). The system is based on the
Utah Electrode Array (UEA), a 10x 10 array of platinum-tipped
silicon extracellular electrodes [2]. This paper describes the de-
velopment of a mixed-signal integrated circuit (first presented
in [10]) that will be flip-chip bonded to the back of the Utah
Array. This chip will directly connect to all 100 electrodes.
amplify the neural signals from each electrode, digitize spikes
and a selected waveform, and transmit the information over an
RF link. Power will be delivered to a S-mm coil mounted on
the back of the chip using an inductive link. The entire device
will be coated in parylene and silicon carbide to protect it from
internal body fluids.

Design constraints

Proposed solution
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VII. CONCLUSION

The complete INII chip dissipates 13.5 mW of power when
the unregulated DC voltage is at its minimum allowable level
of 3.55 V. (Since the efficiency of linear voltage regulators de-
creases with higher unregulated voltage, it is desirable to op-
erate at the lowest allowable coil voltage; at 3.55 V, the regulator
consumes about 7% of the total system power.) The FSK trans-
mitter consumes 50% of this power, and the low-noise neural
signal amplifiers consume 30% with all amplifiers powered up.
The transmitter power could be reduced by using a process with
a thick-metal option to increase inductor (). Moving to a more
advanced process with smaller feature size and lower threshold
voltages would also reduce power consumption by allowing the
chip to operate at a lower supply voltage.

As discussed in the previous section, interference between
digital and analog subsystems of our chip currently limits per-
formance. While an SOI technology would allow for better iso-
lation, we do not believe that substrate coupling is the dom-
inant factor in the interference we observe. Fully-differential
design of the amplifiers and ADC would likely reduce the im-
pact of digital interference, but space limitations imposed by the
400-m electrode pitch prevented us from using fully-differen-
tial circuits in these chips.

Summarizes results

Acknowledges
limitations of their
approach and
possible ways these
limitations could be
addressed




The design of any implantable neural recording device for
neuroprosthetic applications is driven by two dominant factors.
First, the system is severely limited in its power dissipation due
to tissue heating concerns. Second, large amounts of continu-
ously streaming data must be transmitted wirelessly out of the
body with very little latency. These two concerns dictate almost
every aspect of circuit and system-level design. Power limita-
tions strongly suggest that the implanted device perform only
the minimum required functions of amplification, data reduc-
tion and/or compression, and telemetry; any additional compu-
tation is best performed outside the body where size and heat
dissipation is not as much of a concern. Future neural recording
systems may use specialized circuits to isolate and record LFP
energy [25] or perhaps perform spike sorting—distinguishing
between several distinct neurons recorded by a single electrode
on the basis of their action potential shapes [34]. [35]. Adding
spike sorting does improve the accuracy of neuroprosthetic con-
trol somewhat, but at a substantial cost in terms of system com-
plexity. A “middle ground™ approach such as transmitting a
small number of spike “features™ and then clustering the spikes
on the basis of these extracted features using external computa-
tional power may be the best solution when power is taken into
account. Whatever the solution to these problems, the field of
neuroprosthetics poses interesting challenges for integrated cir-
cuit designers in the years ahead.

Taking a step back;
Looking to the
future




Readability

“People won’t read what they can’t read.”

Adapted from “Readability Counts” by D. Burman et al.



Readability...

shortens review time,
improves the odds of acceptance,
increases the readership,

enhances the author’s reputation.

Adapted from “Readability Counts” by D. Burman et al.



Tips for Improving Readability

Tell a story!

Be concise and efficient

— use the minimum number of words necessary to make
your point

Say things in the simplest way possible

— don’t use big words, excessive technical jargon, or
long, complicated sentences just to sound smart

Eliminate jargon

— try to explain things such that a non-expert can
understand



More Tips for Improving Readability

e Use “metacommentary” (“metadiscourse”)

e Use transitions



Metacommentary

“beyond/transcending commentary”

Telling an audience how to interpret what you have
already said or are about to say. Are you...

— Elaborating on a previous idea?

— Moving from general to specific?

— Indicating the relative importance of a claim?
— Finally arriving at your main point?

Provides the reader with “guide posts” for navigating
through the writing

Adapted from They Say, | Say by Graff & Birkenstein



TO WARD OFF POTENTIAL MISUNDERSTANDINGS

This move differentiates your view from ones it might be mis-
taken for.

* Essentially, | am arguing that

* My point is not that we should , but that we should

» What - really means is

TO ALERT READERS TO AN ELABORATION OF A PREVIOUS IDEA

This move says to readers: “In case you didn't get it the first
time, I'll ery saying the same thing in a different way."

* |In other words,

* To put it another way,

TG PROVIDE READERS WITH A ROADMAP TO YOUR TEXT

This move orients readers, giving them advance notice about

where you are going and making it easier for them to process
and follow your text.

* Chapter 2 explores ., while Chapter 3 examines

*  Having just argued that
to

, let us now turn our attention

TO MOVE FROM A GENERAL CLAIM TO A SPECIFIC EXAMPLE

This move signals that you are not just generalizing, that here's
a concrete example that illustrates what you're saying.

* For example,

] . for instance, demonstrates

» Consider ________, for example.

» To take a case in point, =i,

TO INDICATE THAT A CLAIM IS ESPECIALLY IMPORTANT,
QR LESS IMPORTANT

This move shows that what you are about to say is either more
ot less important than what you just said.

* Even more important, .
* But above all, _
* Incidentally, _____

» Bytheway, .
TO HELP YOU ANTICIPATE AND RESPOND TO OBJECTION
This move helps you imagine and respond to other viewpoints.

* Although some readers may objectthat ___ | would answer
that

e

TO GUIDE READERS TO YOUR MOST CENERAL POINT

This move shows that you are wrapping things up and tying up
various subpoints previously made.

* In sum, then,

* My conclusion, then, isthat

* In short,

They Say, | Say by Graff & Birkenstein



Techniques for Good Transitions
(from They Say/I Say)
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e Use pointing words SeTEneE

e Use transition words

— Point/refer back to a concept in the previous sentence

 Repeat key terms and phrases

— Develop a constellation of key terms and phrases,
including their synonyms and antonyms, that you
repeat throughout your text

Adapted from They Say, | Say by Graff & Birkenstein



Positive Example

Repeating
Key
Terms

Transition
Words

the cascaded sample capacitors, helps to make the monolithic
high-pass filter more robust. The limitation of this architecture
is the finite polarization headroom, which will be discussed in
more detail later.

B. Micropower Chopper-Stabilized Amplifier

The design of the chopper amplifier targets low-noise and
low-supply operation along with current-steering demodulation.
Chopping signal currents 1s achieved by modifying a folded-cas-
code amplifier. This implementation requires
to the|basic design] and high-power examples of ch I cas-
code architectgges were previously studied in [21] t:peru—
tional ampl iﬁ!

Thelclassical :uthitccturelrequirc.' onlv two additional setsof
CMOS switches to chopper stabilize the amplifier. The architec-
ture is shown in Fig. 9; the bias networks are not shown to sim-
plify the diagram. The first switch set is placed at the sources of
the bias transistors M12/M13, which demodulates the desired ac
signal as well as upmodulating the front-end offsets. The second
switch set is embedded within the self-biased cascode mirror to
up-modulate the errors from M&/MO. The source degeneration
of M6/M7 and bias network M12/M13 attenuates their offsets
and excess input-referred noise. With this switch architecture,
the output of the transconductance stage 1s at baseband, which
allows for the integrator to both compensate the feedback loop

and filter up-modulated offsets and noise.
A advantage of the folded-cascode amplifieris that

currents can be better partitioned to improve noise performance.
In this design, we allocated 300 nA to flow through each input
pair, 50 nA to flow through each leg of the folded cascade, 50 nA
for the output stage, and 30 nA for bias generation and distribu-
tion. To suppress the noise contribution from M3 and M4 at the
chopper frequency, they were scaled to be relatively large, and

C. Amplifier Front-End Biasing

The biasing design of the summing node VA at the input of the
chopper amplifier is a balance between noise and settling con-
siderations. Although the signal characteristics are purely ac at
this node, the amplifier must have the proper de biasing to ensure
the appropriate amplification and demodulation of the signals.
In particular, the dc bias network’s impedance must be suffi-
ciently large to minimize noise, while still being small enough
to keep the input held at the bias in the presence of typical leak-
ages and common-mode perturbations.

To balance{these performance constraints) the input stage was
biased with “long-FET” (W/L < 1) transistors to a value of
roughly 7.5 G{2 [9]. As illustrated in Fig. 10, a bias current was
passed through a reference FET M1, biased in subthreshold. The
gate voltage was then mirrored to a long-length FET M2. As-
suming symmetric drift currents, the net small-signal impedance
of M2 to the reference voltage is modeled as

W1 L2 kT

Rv.wc; T e

L1 W2 kglyias
where # is the subthreshold slope factor of approximately (.7.
This model demonstrates that synthesizing a resistor of the order
of 7.5 G4} is feasible using on-chip FETs biased with 5 nA of
current. Unlike diode biasing with nonlinear settling time con-
stants, this approach settles out with a defined time constant of
Hey # Ciy or roughly 125 ms in our implementation.

The noise for the bias circuit is modeled by shot noise in the
equilibrium drift currents through M2. This model predicts the
equivalent noise current as

2= AT | A2
n = Rﬁ; H=
that, when referred back to the input through the input capacitors
impedance at the chop frequency, yields a net noise

() [ o
" R.:'-'r 2mCin F, cheg Hz

of roughly 25 nV/rtHz.

i4)

(5)

Pointing
Words

Denison et al., JSSC 2007



Negative Example — No transitions between paragraphs

For each specific mental task performed, different pre-
processing techniques are used. Therefore, a prior knowledge
of the physiology of the task influences the classification.
Even studying the physiological effects of a mental task in a
general population, isolated individuals deviate from the
average characteristics [5]. Then, it would be necessary an
individual physiological study in order to maximize the
performance of the classifier. In such context, this paper
presents a method to standardize the selection of electrodes
and frequency features, in order to automatically adapt the
BCI to motor or non-motor mental tasks.

In [6], authors used the Kullback-Leibler (KL) divergence
as a distance metric to improve the k-nearest neighbor (k-NN)
classifier and to improve the kernel of the Support Vector
Machines (SVMs), which were applied to mental tasks
classification. However, this work uses the K-L divergence in
the usual way, as a measure of discrimination between
probability distributions that are given by the histograms of
each frequency component of each EEG channel.

Benevides et al., ISCAS 2011



Negative Example — Improved

For each specific mental task performed, different pre-
processing techniques are used. Therefore, a prior knowledge
of the physiology of the task influences the classification.
Even studying the physiological effects of a mental task in a
general population, isolated individuals deviate from the
average characteristics [5]. Then, it would be necessary an
individual physiological study in order to maximize the
performance of the classifier. In such context, this paper
presents a method to standardize the selection of electrodes
and frequency features, in order to automatically adapt the
BCI to motor or non-motor [mental tasks.)

In [6], authors used the Kullback-Leibler (
as a distance metric to improve the k-nearest neighbor (k-
classifier and to improve the kernel of the Support Vector
Machines (SVMs), which were applied to mental tasks
classification. However, this work uses the K-L divergence in
the usual way, as a measure of discrimination between
probability distributions that are given by the histograms of
each frequency component of each EEG channel.

Benevides et al., ISCAS 2011

Pointing Words

The authors of [6] attempted
rove the classification

acc of{these mental tasks

by using the Kullback-Leibler
(KL) divergence as a distance
metric in the k-nearest
neighbor (k-NN) classifier.
However, ....



Transitional Expressions

To add or show sequence: again, also, and, and then, besides, equally important, finally, first,
further, furthermore, in addition, in the first place, last, moreover, next, second, still, too

To compare: also, in the same way, likewise, similarly

To contrast: although, and yet, but, but at the same time, despite, even so, even though, for all that,
however, in contrast, in spite of, nevertheless, notwithstanding, on the contrary, on the other hand,
regardless, stll, though, yet

To give examples or intensify: after all, an illustration of, even, for example, for instance, indeed,
in fact, it is true, of course, specifically, that is, to illustrate, truly

To indicate place: above, adjacent to, below, elsewhere, farther on, here, near, nearby, on the
other side, opposite to, there, to the east, to the left

To indicate time: after a while, afterward, as long as, as soon as, at last, at length, at that time,
before, earlier, formerly, immediately, in the meantime, in the past, lately, later, meanwhile, now,
presently, shortly, simultaneously, since, so far, soon, subsequently, then, thereafter, until, until now,
when

To repeat, summarize, or conclude: all in all, altogether, in brief, in conclusion, in other words,
in particular, in short, in simpler terms, in summary, on the whole, that is, to put it differently, to
summarize

To show cause and effect: accordingly, as a result, because, consequently, for this purpose, hence,
otherwise, since, then, therefore, thereupon, thus, to this end, with this object in mind

Taken from:
http://composition.la.psu.edu/resources/graduate-writing-center/handouts-1/Coherence%20in%20Academic%20Writin%20Fall%202010.pdf


http://composition.la.psu.edu/resources/graduate-writing-center/handouts-1/Coherence%20in%20Academic%20Writin%20Fall%202010.pdf

Common Grammatical Problems



Voice

Active voice:

We developed [a new method] for the
unsupervised classification of action
potentials.

Passive voice:

[A new method] for the unsupervised
classification of action potentials was
developed (by us).




Active Voice vs. Passive Voice

e Active voice is usually more direct, resulting in
shorter, easier-to-read sentences

e Active voice is usually more precise

e Passive voice can be more boring to read
BUT....

 There are no set rules for which voice to use

A good rule of thumb is to use active voice
whenever possible



When to Avoid Passive Voice

e When it confuses the meaning because the
“doer” is important (e.g. in introductory sections)

— “A new method was developed....” (By whom? By you,
in this paper? By someone else, in the past?)

e When it makes the sentence unnecessarily
longer, wordier, and more difficult to read

— “When the chip was tested by the authors, it was
discovered that there was a short to ground.” (18w)

VS.

— “We discovered a short to ground during chip testing.”
(9w)



When Passive Voice is Preferable

e When the object is more important than the
doer

— “Protein A is phosphorylated in pancreatic cancer
cells.”

* When the doer is implied (e.g. in a Methods
section)
— “Simulated signals were constructed....Noise was

added....The amplitudes were normalized to
1....Finally, the data was downsampled to 24 kHz.”



Active Voice # First Person

* A power savings of 20% was achieved
compared to the current state of the art.

 We achieved a power savings of 20%
compared to the current state of the art.

e This device consumes 20% less power than
the current state of the art.



Verb Tenses

e Past tense: work that has already been
completed (including the work that you are
presenting in your current paper)

* Present tense: “truths”

* Future tense: paper road map; future work



Verb Tenses

e Past tense: Work that has already been
completed (including the work that you are
presenting in the current paper)

— “Wireless neural recording systems from the
1990s were built from discrete modules [7]....”

— “We built an off-chip class E amplifier....”

— “The integrated circuits were fabricated in a
commercial 0.5-um 3M2P CMOS process.”

Example sentences from: Harrison et al., JSSC 2007



Verb Tenses

e Present tense: “truths”

— “Neurons communicate with one another using
stereotyped voltage pulses known as action potentials
or spikes.”

— “A finite state machine (FSM) on the chip implements
a robust algorithm for recovering this binary
command data in the presence of glitches. The FSM
first waits for a low-to-high transition. When this
occurs, a timer starts counting. When the timer
reaches a specified time, the binary data stream is
sampled.”

Example sentences from: Harrison et al., JSSC 2007



Verb Tenses

e Future tense:

— Paper road map

e “In this paper we will describe the development of a mixed-
signal integrated circuit....”

— Future work

e “This chip will directly connect to all 100 electrodes, amplify
the neural signals from each electrode, digitize spikes and a
selected waveform, and transmit the information over an RF
link. Power will be delivered to a 5-mm coil mounted on the
back of the chip using an inductive link. The entire device
will be coated in parylene and silicon carbide to protect it
from internal body fluids.”

Example sentences from: Harrison et al., JSSC 2007



For More Help...

e Visit the Graduate Writing Center!
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